

Subscriber access provided by ISTANBUL TEKNIK UNIV

Three New 2-Phenoxychromones from the Leaves of Epimedium sagittatum

Yu-Lin Huang, Jun-Chih Ou, Chief-Fu Chen, and Chien-Chih Chen

J. Nat. Prod., **1993**, 56 (2), 275-278• DOI: 10.1021/np50092a014 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink <u>http://dx.doi.org/10.1021/np50092a014</u> provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Journal of Natural Products is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

THREE NEW 2-PHENOXYCHROMONES FROM THE LEAVES OF EPIMEDIUM SAGITTATUM

YU-LIN HUANG, JUN-CHIH OU, CHIEF-FU CHEN, and CHIEN-CHIH CHEN*

National Research Institute of Chinese Medicine, No. 2, Lane 391, Sec. 2, Pei-E Rd, Shin-Dian, Taipei Hsien, Taiwan, Republic of China

ABSTRACT.—Three new 2-phenoxychromones, 6-demethoxy-7-methylcapillarisin [1], 6-demethoxy-4'-methyl-8-isopentenylcapillarisin [2], and 6-demethoxy-7-isopentenylcapillarisin [3], were isolated from the leaves of *Epimedium sagittatum* (Berberidaceae). The structures of these compounds were established by spectral methods.

The aerial parts of *Epimedium* plants (Berberidaceae) or "yinyanghuo," are used in China for impotence, atrophy, neurasthenia, amnesia, and climacteric hypertension. Previous studies on the aerial parts of *Epimedium* species have reported the presence of alkaloids, lignans, terpenoids, and flavonoid glycosides (1-6). Recently, we reinvestigated the leaves of *Epimedium sagittatum* Maxim. with attention to less polar fractions. As a result, three new 2-phenoxychromones **1-3** were isolated.

From the analysis of spectral data,

compounds 1-3 were identified as members of the 2-phenoxychromone class, which possesses a flavone-like skeleton with the A/B ring system linked to the C ring via an oxygen atom (7-9).

6-Demethoxy-7-methylcapillarisin [1] was obtained as colorless needles. The hreims of compound 1 displayed the molecular ion peak at m/z 300.0613 (calcd 300.0633), consistent with the molecular formula $C_{16}H_{12}O_6$. In the ¹H-nmr spectrum, the singlet at δ 5.08 was characteristic of the H-3 signal in 2-

phenoxychromone (7-9). The singlet at δ 12.86, due to a chelated 5-OH group, and two doublets (J = 2.1 Hz), at δ 6.38 (1H, H-6), and 6.57 (1H, H-8), suggested that compound 1 was 5,7-disubstituted in ring A. Furthermore, a typical A_2B_2 system at δ 6.86 (2H, d, J = 8.0 Hz) and 7.18 (2H, d, J = 8.0Hz) showed the presence of four aromatic protons on ring C. The location of the MeO group at δ 3.84 (3H, s) was established through nOe experiments. Irradiation of the MeO protons enhanced the signals at δ 6.38 (H-6) and 6.57 (H-8) by 24%. On the basis of above spectral evidence, the structure of 1 was identified as 6-demethoxy-7-methylcapillarisin.

6-Demethoxy-4'-methyl-8-isopentenylcapillarisin [2] was obtained as colorless needles. The hreims of compound 2 displayed the molecular ion peak at m/z368.1238 (calcd 368.1260), consistent with the molecular formula $C_{21}H_{20}O_6$. The characteristic singlet of H-3 at δ 5.15 was also observed in its ¹H-nmr spectrum. One MeO group (δ 3.85) appeared in 2. The signals at δ 1.67 (3H, s), 1.71 (3H, s), 3.33 (2H, d, J = 7.1)Hz) and 5.14 (1H, m) showed the presence of a γ, γ -dimethylallyl group (10,11). The chemical shifts of aromatic protons at δ 7.08 (2H, d, J = 7.8 Hz), 7.32 (2H, d, J = 7.8 Hz), and 6.32 (1H, s) indicated that 2 also contained an A_2B_2 system in ring C, but only one unsubstituted proton in ring A. Irradiation at δ 3.85 (Ar-OMe) enhanced the signal at δ 7.08 (H-3' and H-5') by 18%, showing that the MeO group was located at C-4'. The position of the γ , γ dimethylallyl group was assigned by HMBC (heteronuclear multiple bond correlation) experiments. As shown in Figure 1, the proton at δ 12.83 (5-OH) showed cross peaks with the carbons at δ 99.7 (C-6) and 103.4 (C-10); the proton at δ 6.32 (H-6) showed cross peaks with the carbons at δ 103.4 (C-10) and 107.5 (C-8). From these results, the position of the γ, γ -dimethylallyl group of 2 was

FIGURE 1. Correlations in the HMBC spectrum of 2.

concluded to be at C-8, and the structure of **2** was assigned as 6-demethoxy-4'methyl-8-isopentenylcapillarisin.

6-Demethoxy-7-isopentenylcapillarisin [3] was obtained as pale pink needles. The hreims of compound 3 displayed the molecular ion peak at m/z354.1109 (calcd 354.1103), consistent with the molecular formula $C_{20}H_{18}O_6$. In the ¹H-nmr spectrum, the singlet at δ 5.10 was assigned to H-3 (7-9). The signals at δ 1.76 (3H, s), 1.78 (3H, s), 4.66 (2H, d, J = 6.6 Hz), and 5.47 (1H, m) showed the presence of an isopentenoxyl group. Furthermore, irradiation of the C-11 protons at δ 4.66 enhanced the signals at δ 6.32 (H-6) and 6.50 (H-8) by 16% and 12%, respectively. This clearly indicated that the isopentenoxyl group was located at C-7. As for the remaining signals, δ 6.97 (2H, d, I = 9.0 Hz) was assigned to H-3' and H-5', and δ 7.20 (2H, d, J = 9.0Hz) was for H-2' and H-6'. From the above spectral data, the structure of 3was established as 6-demethoxy-7-isopentenylcapillarisin.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.— Mp's were measured on Yanaco Micro Melting Point Apparatus and were uncorrected. The ir spectra were recorded on a JASCO-IR-100 Spectrometer. ¹H- and ¹³C-nmr spectra were taken on Bruker AM-300 WB (300 MHz) FT-NMR. Hreims and eims were obtained on JEOL SX-102A and JEOL JMS-HX100 spectrometers, respectively. PLANT MATERIAL.—Plant material, named "yinyanghuo," used in this research was obtained at a market in Taipei and was identified as the leaves of *E. sagittatum* by Mr. M.T. Kao (National Research Institute of Chinese Medicine). A voucher specimen is deposited in the herbarium of our institution.

EXTRACTION AND SEPARATION.-The dried leaves (15 kg) were extracted with Me_2CO . After evaporation, the residue was chromatographed on a Si gel column and eluted with a gradient of *n*-hexane and *n*-hexane-Me₂CO (10:1 \mapsto 1:1) to give several fractions. The fractions eluted with n-hexane-Me₂CO (5:1) were evaporated, and the residue was further separated on a Si gel column (230-400 mesh) using n-hexane-EtOAc $(4:1\mapsto 2:1)$ as the eluent to afford four fractions. Each fraction was further purified by preparative tlc on Si gel using CH₂Cl₂-MeOH (13:1) as the solvent system to give 6-demethoxy-7-methylcapillarisin [1] (250 mg), 6-demethoxy-4'-methyl-8-isopentenyl-capillarisin [2] (25 mg), and 6-demethoxy-7-isopentenylcapillarisin [3] (120 mg).

6-Demethoxy-7-methylcapillarisin [1].—Colorless needles: mp 245–246°; ir (KBr) 3200, 1670, 1610, 1490 cm⁻¹; eims m/z (%) [M]⁺ 300 (100), 721 (23), 167 (33), 134 (11); hreims 300.0613 (calcd for C₁₆H₁₂O₆, 300.0633); ¹H nmr (DMSO-d₆) δ 3.84 (3H, s, 7-OMe), 5.08 (1H, s, H-3), 6.38 (1H, d, J = 2.1 Hz, H-6), 6.57 (1H, d, J = 2.1 Hz, H-8), 6.86 (2H, d, J = 8.0 Hz, H-3' and H-5'), 7.18 (2H, d, J = 8.0 Hz, H-2' and H-6'), 12.86 (1H, s); ¹³C nmr see Table 1.

6-Demethoxy-4'-methyl-8-isopentenylcapillarisin [2].—Colorless needles: mp 155–156°; ir (KBr) 3200, 1650, 1615, 1590, 1505 cm⁻¹; eims m/z(%) [M]⁺ 368 (84), 353 (100), 313 (64), 300 (47), 153 (3), 148 (16); hreims 368.1238 (calcd for C₂₁H₂₀O₆, 368.1260); ¹H nmr (Me₂CO-d₆) & 1.67 (3H, s, H-14), 1.71 (3H, s, H-15), 3.33 (2H, d, J=7.1 Hz, H-11), 3.85 (3H, s, 4' -OMe), 5.14 (1H, br t, J=7.1 Hz, H-12), 5.15 (1H, s, H-3), 6.32 (1H, s, H-6), 7.08 (2H, d, J=7.8 Hz, H-3' and H-5'), 7.32 (2H, d, J=7.8 Hz, H-2' and H-6'), 12.83 (1H, s); ¹³C nmr see Table 1.

6-Demethoxy-7-isopentenylcapillarisin [3].—Pale pink needles: mp 170–172°; ir (KBr) 3200, 1650, 1585, 1505 cm⁻¹; eims m/z (%) [M]⁺ 354 (6), 286 (100), 153 (29), 134 (20); hreims 354.1109 (calcd for C₂₀H₁₈O₆, 354.1103); ¹H nmr (Me₂CO-d₆) δ 1.76 (3H, s, H-14), 1.78 (3H, s, H-15), 4.66 (2H, d, J = 6.6 Hz, H-11), 5.10 (1H, s, H-3), 5.47 (1H, br s, J = 6.6 Hz, H-12), 6.32 (1H, d, J = 2.0 Hz, H-6), 6.50 (1H, d, J = 2.0 Hz, H-8), 6.97 (2H, d, J = 9.0 Hz, H-3' and H-5'), 7.20 (2H, d, J = 9.0 Hz, H-2' and H-6'), 12.86 (1H, s); ¹³C nmr see Table 1.

TABLE 1.¹³C-nmr Data for Compounds1, 2, and 3.ª

Carbon	Compound		
	1	2	3
C-2	168.8	168.7	169.5
C-3	87.6	88.0	88.1
C-4	183.6	184.7	184.5
C-5	161.8	162.4	163.0
C-6	98.7	99.7	99.6
C-7	165.3	162.4	165.5
C-8	93.2	107.5	93.9
C-9	155.2	153.6	156.2
C-10	103.3	103.4	104.2
C-1'	143.6	145.9	145.0
C-2'	122.3	122.8	122.7
C-3'	117.0	116.1	117.5
C-4'	156.3	159.2	157.1
C-5′	117.0	116.1	117.5
C-6'	122.3	122.8	122.7
C-11		22.0	66.3
C-12		122.9	120.0
C-13		132.0	139.0
C-14		25.8	25.8
C-15	1	17.8	18.2
-ОМе	56.5	56.0	

^a300 MHz, Me₂CO- d_6 . The chemical shifts were assigned on the basis of ¹H-¹³C COSY spectra.

ACKNOWLEDGMENTS

This study was supported by a grant from the National Science Council of the Republic of China (NSC-80-0420-B-077-01).

LITERATURE CITED

- Y. Oshima, M. Okamoto, and H. Hikino, *Plant Med.*, 55, 309 (1989).
- M. Mizumo, N. Sakakibara, S. Hanioka, M. Iinuma, T. Tanaka, X.S. Liu, and D.W. Shi, *Phytochemistry*, 27, 3641 (1988).
- M. Mizuno, M. Iinuma, T. Tanaka, N. Skakibara, T. Fujikawa, S. Hanioka, Y. Ishida, X.S. Liu, and H. Murata, *Phytochemistry*, 27, 3645 (1988).
- Y. Ito, F. Hirayama, K. Suto, K. Sagara, and T. Yoshida, *Phytochemistry*, 27, 911 (1988).
- T. Miyase, A. Ueno, N. Takizawa, H. Kobayashi, and H. Oguchi, *Chem. Pharm.* Bull., 36, 2475 (1988).
- M. Mizuno, M. Iinuma, T. Tanaka, N. Sakakibara, and S. Hanioka, *Chem. Pharm.* Bull., 36, 3487 (1988).
- Y. Hashidoko, S. Tahara, and J. Mizutani, Phytochemistry, 30, 3837 (1991).

- 8. T. Komiya, M. Tsukui, and H. Oshio, Yakugaku Zasshi, 96, 841 (1976).
- 9. T. Komiya, Y. Naruse, and H. Oshio, Yakugaku Zassbi, 96, 855 (1976).
- 10. D.R. Gupta and B. Ahmed, J. Nat. Prod.,

47, 958 (1984).

11. V.K. Saxena and B.K. Bhadoria, *Phytochemistry*, **29**, 3921 (1990).

Received 1 June 1992